Learning by Making at BeAM

- What is Making?
- Where are we?
- Examples for teaching: Nanotechnology, Radios, Music
- Neuroscience/Microscopy Teaching Vladimir Ghukasyan

RESEARCH

HUB

@ Kenan Science Library

Vladimir Ghukasyan Neuroscience

UNC Neuroscience Center

Richard Superfine (Physics/Astro) Michelle Garst (BeAM)

What is Making?

•Things! Materials, Electronics, Sensors, Motors, 3D printing

Theater Set Shop

Where are we?: BeAM@

Where are we?: BeAM@Hanes Art Center

Training, Workshops Wood/Plastic/Metal working Electronics, Digital Fabrication

П

2

Where are we?: BeAM@Murray Hall (4/2016)

RESEARCH

BeAM@KSL Makerspace

3D Design Consultations3D Printing, 3D Scanning, Arduino, SewingWorkshops & Course-integrated instruction

Course Integrated Instruction

ECON 325: Entrepreneurship: Principles and Practice

JOMC 585: 3D Design Studio

ECON 327: Commercial Venture Creation

ARTH 089: First Year Seminar on Islamic Art and Science

NBIO 890: Special Topics in Neurobiology: Microscopy Methods in Neurobiology ARTS 300: Studio 15: Art Majors Seminar

JOMC 585: 3D Design Studio

Making for First Year Seminar: Mike Falvo (Physics/Astro) Pedagogy and Evaluation

- PHYS 53.001: Handcrafting in the Nanoworld: Building Models and Manipulating Molecules
- Structure models of proteins/complexes
- Dynamics modeling processes
- Function Mechanical model

Making for First Year Seminar: Mike Falvo (Physics/Astro) Pedagogy and Evaluation

"You first see really basic representations, then next more complicated, and on up to the real thing. This is an effective progression [for teaching] because if I saw the microscopes [pictures] right away I'd have been confused."

"It [the course content] is not simplified, but it helps to build the model and visualize what is going on."

Copyright © 2013 American Scientific Publishers All rights reserved Printed in the United States of America

Journal of Nano Education Vol. 2, 53–66, 2010

Nanoscience for All: Strategies for Teaching Nanoscience to Undergraduate Freshmen Science and Non-Science Majors

Thomas R. Tretter^{1, *}, M. Gail Jones², and Michael R. Falvo³

RESEARCH HUB @ Kenan Science Library

Impact of Introductory Nanoscience Course on College Freshmen's Conceptions of Spatial Scale

Thomas R. Tretter^{1,*}, M. Gail Jones², and Mike Falvo³

Making for 100+ classes

- Making = active learning for all classes
- How to make the abstract real

Physics 100: How Things Work 125 students-NonScience Majors! Everyone – crystal radio kit Wire, diode, earpiece :3\$/kit

Making Music: The Interplay of Physics and Music

 FYS taught by Laurie McNeil (Physics/Astro) & Brent Wissick (Music)

How do you use it for teaching?

- Classes entirely or in sections
 - Physical Computing (entirely): Sp'17
 - NeuroScience Microscopy (4 sections):Sp'15
 - Course Development grants coming soon...
- Training in software current calendar, we come to you!
- Training in use of spaces/tools ongoing, customized for you
- Open project time in space for out of class experiences.

The Challenge

NBIO 890-001 Microscopy Principles and Applications

To update the graduate course on microscopy to be in pace with the modern trend in research. Students need to be able to:

- build scientific equipment on their own
- adapt the equipment built by others through technology transfer
- save money
- overcome the limitations of commercially available equipment and develop independent thinking

Scientific equipment

The Challenge

Electronics and 3D Printing

- Joint design of the program and shared materials
- Makerspace provided:
 - Expertise
 - Equipment
 - Materials

Project:

A simple compound microscope with adjustable light source

Evaluation

Interesting and fun, but could have been more related to the general topic

The Future

weeks is NOT ENOUGH

Changed approach (Lessons learned)

We will use the Makerspace

- Throughout the full semester
- In the context of the material presented / intertwined approach
- Build a few projects of useful equipment

Projects:

- Mobile phone-based microscope
- A simple compound microscope
- Liquid handling for tissue clearing
- ...and more

RESEARCH HUB @ Kenan Science Library

Acknowledgements

Makerspace

- Richard Superfine
- Danianne Mizzy
- Michelle Garst
- David Romito

Students

- Kelly Carstens
- Nadia Nagy
- Esteban Oyarzabal
- James Taylor

