Supporting Carolina’s Research

Michelle Cawley
Head of Clinical, Academic, and Research Engagement

Jennifer Bissram
Health Sciences Librarian Liaison to Adams School of Dentistry

Adam Dodd
Data/Applications Analyst Co-Lead Impact Measurement and Visualization (IMV) Team

New Faculty
August 2021
Session Road Map

• Evaluate baseline knowledge
• Resources for literature searches
 ▪ Managing search results
 ▪ Screening literature
 ▪ AI and Machine Learning for prioritizing search results
• Impact Measurement & Visualization
• Q&A
Rate each statement as it applies to you.

- I am experienced with Systematic Reviews.
- I am experienced using reference managers.
- I am familiar with online tools for screening search results.
- I am interested in using AI to reduce manual screening of search results.
- I am familiar with bibliometric analysis.
Which reference manager do you prefer? Select the best option.

1. I don't use a reference manager.
2. I prefer EndNote.
3. I prefer SciWheel (formerly F1000).
4. I prefer Zotero.
5. Other, not listed (e.g., Mendeley).
Reference Managers & Screening Software

Jennifer Bissram
Health Sciences Librarian
Liaison to Adams School of Dentistry
Managing search results

Citation / reference managers
 • EndNote (recommended)
 • SciWheel
 • Zotero

Need a citation manager recommendation?
https://guides.lib.unc.edu/compare-citation
Managing search results

How do they help?
- Store references from multiple sources
- Duplicate removal
- Creates file for importing into Covidence

For more information on managing citations for systematic reviews...

https://guides.lib.unc.edu/systematic-reviews/citations
Screening the literature with Covidence

• Covidence is tool for title/abstract screening, full-text screening, data abstraction, and quality assessment.

• Provided free from HSL & its partners

• Unlimited reviews
Title / Abstract Screening

#20 - Liu 2015

The effect of an egg breakfast on satiety in children and adolescents: a randomized crossover trial

J Am Coll Nutr 2015;34(3):185-90

2015

DOI: 10.1080/07315724.2014.942471

OBJECTIVE: To evaluate the effects of an egg breakfast on lunchtime energy intake in children (age 4-6 years) and adolescents (age 14-17 years). METHODS: In 2 randomized crossover trials, participants received either an egg breakfast or an isocaloric bagel breakfast. In both trials, subsequent lunchtime energy intake was the primary outcome. The trial with adolescents also measured each participant's serum ghrelin, serum peptide YY (PYY), and self-assessment of appetite rated using a visual analog scale. RESULTS: Lunchtime food intakes after egg and bagel breakfasts were not significantly different for either age group. Visual analog scale ratings of hunger and satiety were also not different between the 2 treatments in adolescents. Consumption of the egg breakfast led to a significant increase in serum PYY levels (p = 0.0001) in adolescents. However, increased levels of PYY were not correlated with reduced food intake. CONCLUSION: Short-term food intake in children and adolescents is not differentially altered by an egg breakfast compared to a bagel breakfast.

#24 - Lee 2015

Significance of Ochratoxin A in Breakfast Cereals from the United States

J Agric Food Chem Nov 04 2015;63(33):9404-9

2015 Nov 04

DOI: 10.1021/jf50567av

Ochratoxin A (OTA) has been found in all major cereal grains including oat, wheat, and barley worldwide and considered as a potential concern in food safety. A total of 489 samples of corn, rice, wheat, and oat-based breakfast cereal were collected from U.S. retail marketplaces over a two-year period, and OTA was determined by high-performance liquid chromatography. Overall,
Full Text Screening
#4710 - Askelson 2017
Askelson, Natosha M.; Golombewski, Elizabeth H.; Ghatas, Andrew; Williams, Steven; Deiger, Patti J.; Scheidel, Carrie A.
Exploring the parents' attitudes and perceptions about school breakfast to understand why participation is low in a rural Midwest state.
Journal of Nutrition Education and Behavior 02/ 2017;49(2):107-116
Netherlands Elsevier Science 2017 02

#35 - Fulford 2016
Fulford, J.; Varley-Campbell, J. L.; Williams, C. A.
The effect of breakfast versus no breakfast on brain activity in adolescents when performing cognitive tasks, as assessed by fMRI
2016

#46 - Blondin 2016
Blondin, S. A.; Azman-Frasca, S.; Djang, H. D.; Economos, C. D.
Breakfast consumption and adiposity among children and adolescents: an updated review of the literature
Want more information?

Systematic Review Guide
https://guides.lib.unc.edu/systematic-reviews

Covidence Guide
https://guides.lib.unc.edu/Covidence

Upcoming Classes
https://hsl.lib.unc.edu/
Automation Approaches for Literature Searches

Michelle Cawley
Head of Clinical, Academic, and Research Engagement
An Automation Approach for Every Step

- **BUILD SEARCH**: Tinker with and compile search terms.
- **REMOVE DUPLICATES**: Two-phase process with AI to predict likely duplicates.
- **ANALYZE KEYWORDS**: Keyword prevalence within a set of search results.
- **PRIORITIZE RESULTS**: Clustering and ML to prioritize records for review.
Keyword Analysis Tool (KAT)
Analyzing Keywords

- bisexual
- bi-sexual
- citizenship status
- disabilities
- disability
- disabled
- disadvantage
- disadvantaged
- discrimination
- discriminatory
- disparities
- disparity
- diverse
- economic status
- elderly
- equitable
- equities
- ethnic
- ethnicity
- gender
- geographically isolated
- HIV/AIDS
- homeless
- homelessness
- illegal alien
- illegal aliens
- immigrant
- immigrants
- immigration status
- indigent
- inequalities
- inequality
- inequity
- institutionalized
- lesbian
- LGBT
- LGBTQ
- low income
- low population density
- marginal
- marginalization
- marginalized
- medicaid recipient
- medicaid recipients
- medically complex
- mental illness
- mentally disabled
- mentally ill
- migrant
- migrants
- minorities
- non-English speaking
- oppressed
- oppression
- people of color
- peripheralized
- power (psychology)
- pregnant women
- prisoners
- refugee
- rural
- rural
- sexual orientation
- sexuality
- socioeconomic
- stigmatized
- stigmatizing
- susceptible
- transgender
- transgendered
- transient
- underinsured
- underpopulated
- underrepresented
- under-represented
- underserved
- under
- represented
- vulnerable
- veterans
KAT Output

• Term “gender” appears in 3,503 records or 13.53% of results.
• If term “gender” is removed, results will drop by approximately 1,500 results.
Prioritizing Search Results Using Machine Learning
Experience and Interest in Machine Learning (ML)

- No experience using ML on **bibliographic data**.
- Some experience using ML on **bibliographic data**.
- Some experience with ML on **other data** (not bibliographic).
- Interested in applying ML to **bibliographic data**.

Add annotation where applicable.
(Some) Machine Learning Terms

⭐ Add annotation to terms with which you are familiar.

- Artificial Intelligence
- Supervised Machine Learning
- Active Machine Learning
- Deep Learning
- Unsupervised Machine Learning
- Clustering
- Seed Studies
- Training Data
Overview of Text Analytics Approaches

- **Clustering**
 - **Unsupervised Clustering**
 - **Supervised Clustering**

- **Machine Learning**
 - **Active Machine Learning**

- **Passive Machine Learning**
 - **Passive Training Data**

- **Known Relevant Studies (Seeds)**
 - **Iterative Training Data**

- **Fully Supervised**
Why Use Machine Learning

• Save time.
 • Team members can begin extracting data sooner.
 • Screen fewer studies.
• Expand the scope of your question.

Image by Jörg Peter from Pixabay
When to Use Machine Learning to Reduce Manual Screening

- **Large Set of Search Results**: Generally, we recommend searches with 3,000 or more results to get a measurable benefit.

- **Various Publication Types**
 - Scoping reviews
 - Rapid reviews
 - Systematic and systematized reviews
 - Bibliometric analysis

- **Health Related Topics**: Evidence of efficacy is primarily in the areas of health and medicine. Much of the peer-reviewed literature in this domain also.

- **Low Precision Topics**: “Messy” topics that require imprecise search terms leading to significant false positives are good candidates.
How it Works
Clustering At a Glance

• **Unsupervised machine learning** on a set of search results.
 • Potential algorithms: K-Means, Nonnegative Matrix Factorization (NMF), Latent Dirichlet Allocation (LDA).

• “**Refine or Shine**”
 • Refine search strategy.
 • Identify a pocket of results to look at more closely.

• **Benefits**
 • No training data necessary.
 • Simple, quick, data-driven approach.

• **Limitations**
 • Requires subject matter knowledge.
 • No quantifiable predictions of recall.
Visualizing Clustering

Compile search results

Cluster based on text similarities in titles and abstracts

Review high priority clusters based on keyword summary
Supervised Clustering At a Glance

• **Semi-supervised machine learning** on a set of search results
 • Underlying approach is the same as clustering.

• **Seeds are required**
 • Follow the seeds to prioritize a batch of records to review.

• **Benefits**
 • Relatively little training data are required.
 • Quantitative approach that takes the guess work out of which clusters to review.
 • Recall can be predicted.
Visualizing Supervised Clustering

1. Compile search results + known relevant studies or seeds.
2. Cluster based on text similarities in titles and abstracts.
3. Review high priority clusters based on percent of seed studies.
Machine Learning At a Glance

• Fully supervised method
 ▪ Potential algorithms: Naïve-Bayes, Support Vector Machines (SVM)
• Can be active or passive training
• Benefits
 ▪ Regarded as being more precise method (i.e., fewer false positives)
• Challenges
 ▪ Training dataset required
 ▪ Active ML predictions may be unreliable
Visualizing Machine Learning

Unclassified Studies

Training Data

Predicted Relevant

Predicted Not Relevant

Classified Studies
Techniques Side-by-Side

- **Keyword Search Strategy**
 - Unsupervised learning; no input required; no predictive metrics.
 - Traditional approach; difficult to balance precision and recall.

- **Clustering**
 - Unsupervised learning; no input required; no predictive metrics.

- **Supervised Clustering**
 - Semi-supervised learning; seeds required; predictive metrics.

- **Machine Learning**
 - Supervised learning; training dataset required; predictive metrics.
UNC Researchers Using Automation

<table>
<thead>
<tr>
<th>Project</th>
<th>Change in Precision<sup>1</sup></th>
<th>Studies Not Screened Manually</th>
<th>Time Saved (Hours)<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ExHa</td>
<td>+ 8.0%</td>
<td>4,697</td>
<td>78-157</td>
</tr>
<tr>
<td>2. DisHF</td>
<td>No change</td>
<td>2,061</td>
<td>34-69</td>
</tr>
<tr>
<td>3. CoEHS</td>
<td>Unavailable</td>
<td>7,426</td>
<td>124-248</td>
</tr>
</tbody>
</table>

¹ Precision is calculated as # relevant studies identified/total reviewed. Change in precision refers to calculation of precision in prioritized studies (after machine learning) compared to randomly selected studies. A positive change indicates that precision increased following machine learning.

² Time saved calculated as a range of 30 seconds (low end) to 1 minute (high end) x number of studies x 2 reviewers.
Impact Measurement & Visualization

Adam Dodd

Data/Applications Analyst
Co-Lead Impact Measurement and Visualization (IMV) Team
IMV @ HSL

IMV partners with the UNC-Chapel Hill community on impact measurement and visualization projects in support of research, education, and clinical care.

- Identify patterns, trends, and gaps in unit-supported research, education or clinical care activities
- Measure and assess research impact by discipline area
- Discover the scope and pattern of research collaborations (e.g. author, institution, and country collaboration)
- Communicate research impact to audiences such as funders or promotion and tenure committees
Analysis Process

- Identify project scope, goals, and research questions
- Construct search strategy in consultation with domain experts
- Retrieve and clean data (most time-consuming step)
- Perform analyses; produce visualizations
- Review initial analyses with team members for quality assurance; identify additional questions
- Revise analyses / visualizations as needed
Data Types and Sources

Data Types
● Publications
● Grants
● Patents

Data Source Examples
● Scopus, Web of Science (citation tracking databases)
● PubMed, CINAHL, CT.gov, etc. (more specific databases)
● NIH Federal Reporter, UNC RAMSeS
Project Example:
Nurse Research Capacity within the Caribbean

Research collaborators:
• UNC School of Nursing
• University of the West Indies School of Nursing
• UNC Health Sciences Library
Research Questions

Within the Caribbean region:

- Which organizations support nurse research?
- What is the level of research output, from the region and by institution?
- What are the areas of research focus among nurse researchers?
- How has the research focus changed over time?
Overview of Country Collaboration

Color represents average publication date

Project Example:
UNC Gillings School of Global Public Health - Infectious Diseases

Research collaborators:
• UNC SPH Research Administration
• UNC Health Sciences Library
What were the most useful parts of today's presentation?